\(\int \frac {x^2}{(a+b \arccos (c x))^{3/2}} \, dx\) [193]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 252 \[ \int \frac {x^2}{(a+b \arccos (c x))^{3/2}} \, dx=\frac {2 x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \arccos (c x)}}-\frac {\sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {3 \pi }{2}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {3 \pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{b^{3/2} c^3} \]

[Out]

-1/2*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arccos(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/c^3-1/2*Fres
nelS(2^(1/2)/Pi^(1/2)*(a+b*arccos(c*x))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/b^(3/2)/c^3-1/2*cos(3*a/b)*Fr
esnelC(6^(1/2)/Pi^(1/2)*(a+b*arccos(c*x))^(1/2)/b^(1/2))*6^(1/2)*Pi^(1/2)/b^(3/2)/c^3-1/2*FresnelS(6^(1/2)/Pi^
(1/2)*(a+b*arccos(c*x))^(1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/b^(3/2)/c^3+2*x^2*(-c^2*x^2+1)^(1/2)/b/c/(a
+b*arccos(c*x))^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {4728, 3387, 3386, 3432, 3385, 3433} \[ \int \frac {x^2}{(a+b \arccos (c x))^{3/2}} \, dx=-\frac {\sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {3 \pi }{2}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {\pi }{2}} \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {3 \pi }{2}} \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}+\frac {2 x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \arccos (c x)}} \]

[In]

Int[x^2/(a + b*ArcCos[c*x])^(3/2),x]

[Out]

(2*x^2*Sqrt[1 - c^2*x^2])/(b*c*Sqrt[a + b*ArcCos[c*x]]) - (Sqrt[Pi/2]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b
*ArcCos[c*x]])/Sqrt[b]])/(b^(3/2)*c^3) - (Sqrt[(3*Pi)/2]*Cos[(3*a)/b]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcCos[c
*x]])/Sqrt[b]])/(b^(3/2)*c^3) - (Sqrt[Pi/2]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcCos[c*x]])/Sqrt[b]]*Sin[a/b])/(
b^(3/2)*c^3) - (Sqrt[(3*Pi)/2]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b*ArcCos[c*x]])/Sqrt[b]]*Sin[(3*a)/b])/(b^(3/2)*c
^3)

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4728

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(-x^m)*Sqrt[1 - c^2*x^2]*((a + b*Arc
Cos[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[1/(b^2*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[x^(n + 1), C
os[-a/b + x/b]^(m - 1)*(m - (m + 1)*Cos[-a/b + x/b]^2), x], x], x, a + b*ArcCos[c*x]], x] /; FreeQ[{a, b, c},
x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \arccos (c x)}}+\frac {2 \text {Subst}\left (\int \left (-\frac {3 \cos \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{4 \sqrt {x}}-\frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right )}{4 \sqrt {x}}\right ) \, dx,x,a+b \arccos (c x)\right )}{b^2 c^3} \\ & = \frac {2 x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \arccos (c x)}}-\frac {\text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arccos (c x)\right )}{2 b^2 c^3}-\frac {3 \text {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arccos (c x)\right )}{2 b^2 c^3} \\ & = \frac {2 x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \arccos (c x)}}-\frac {\cos \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arccos (c x)\right )}{2 b^2 c^3}-\frac {\left (3 \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {3 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arccos (c x)\right )}{2 b^2 c^3}-\frac {\sin \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arccos (c x)\right )}{2 b^2 c^3}-\frac {\left (3 \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {3 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arccos (c x)\right )}{2 b^2 c^3} \\ & = \frac {2 x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \arccos (c x)}}-\frac {\cos \left (\frac {a}{b}\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \arccos (c x)}\right )}{b^2 c^3}-\frac {\left (3 \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \arccos (c x)}\right )}{b^2 c^3}-\frac {\sin \left (\frac {a}{b}\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \arccos (c x)}\right )}{b^2 c^3}-\frac {\left (3 \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \arccos (c x)}\right )}{b^2 c^3} \\ & = \frac {2 x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \arccos (c x)}}-\frac {\sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {3 \pi }{2}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {3 \pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arccos (c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{b^{3/2} c^3} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.37 (sec) , antiderivative size = 273, normalized size of antiderivative = 1.08 \[ \int \frac {x^2}{(a+b \arccos (c x))^{3/2}} \, dx=\frac {e^{-\frac {3 i a}{b}} \left (8 c^2 e^{\frac {3 i a}{b}} x^2 \sqrt {1-c^2 x^2}+i e^{\frac {2 i a}{b}} \sqrt {-\frac {i (a+b \arccos (c x))}{b}} \Gamma \left (\frac {1}{2},-\frac {i (a+b \arccos (c x))}{b}\right )-i e^{\frac {4 i a}{b}} \sqrt {\frac {i (a+b \arccos (c x))}{b}} \Gamma \left (\frac {1}{2},\frac {i (a+b \arccos (c x))}{b}\right )+i \sqrt {3} \sqrt {-\frac {i (a+b \arccos (c x))}{b}} \Gamma \left (\frac {1}{2},-\frac {3 i (a+b \arccos (c x))}{b}\right )-i \sqrt {3} e^{\frac {6 i a}{b}} \sqrt {\frac {i (a+b \arccos (c x))}{b}} \Gamma \left (\frac {1}{2},\frac {3 i (a+b \arccos (c x))}{b}\right )\right )}{4 b c^3 \sqrt {a+b \arccos (c x)}} \]

[In]

Integrate[x^2/(a + b*ArcCos[c*x])^(3/2),x]

[Out]

(8*c^2*E^(((3*I)*a)/b)*x^2*Sqrt[1 - c^2*x^2] + I*E^(((2*I)*a)/b)*Sqrt[((-I)*(a + b*ArcCos[c*x]))/b]*Gamma[1/2,
 ((-I)*(a + b*ArcCos[c*x]))/b] - I*E^(((4*I)*a)/b)*Sqrt[(I*(a + b*ArcCos[c*x]))/b]*Gamma[1/2, (I*(a + b*ArcCos
[c*x]))/b] + I*Sqrt[3]*Sqrt[((-I)*(a + b*ArcCos[c*x]))/b]*Gamma[1/2, ((-3*I)*(a + b*ArcCos[c*x]))/b] - I*Sqrt[
3]*E^(((6*I)*a)/b)*Sqrt[(I*(a + b*ArcCos[c*x]))/b]*Gamma[1/2, ((3*I)*(a + b*ArcCos[c*x]))/b])/(4*b*c^3*E^(((3*
I)*a)/b)*Sqrt[a + b*ArcCos[c*x]])

Maple [A] (verified)

Time = 2.07 (sec) , antiderivative size = 299, normalized size of antiderivative = 1.19

method result size
default \(-\frac {\sqrt {-\frac {3}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arccos \left (c x \right )}\, \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arccos \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right )-\sqrt {-\frac {3}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arccos \left (c x \right )}\, \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arccos \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right )+\sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arccos \left (c x \right )}\, \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arccos \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}-\sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arccos \left (c x \right )}\, \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arccos \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}+\sin \left (-\frac {a +b \arccos \left (c x \right )}{b}+\frac {a}{b}\right )+\sin \left (-\frac {3 \left (a +b \arccos \left (c x \right )\right )}{b}+\frac {3 a}{b}\right )}{2 c^{3} b \sqrt {a +b \arccos \left (c x \right )}}\) \(299\)

[In]

int(x^2/(a+b*arccos(c*x))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/c^3/b*((-3/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arccos(c*x))^(1/2)*cos(3*a/b)*FresnelC(3*2^(1/2)/Pi^(1/2)/(-3/b
)^(1/2)*(a+b*arccos(c*x))^(1/2)/b)-(-3/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arccos(c*x))^(1/2)*sin(3*a/b)*FresnelS(3
*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arccos(c*x))^(1/2)/b)+Pi^(1/2)*2^(1/2)*(a+b*arccos(c*x))^(1/2)*cos(a/b)*Fr
esnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arccos(c*x))^(1/2)/b)*(-1/b)^(1/2)-Pi^(1/2)*2^(1/2)*(a+b*arccos(c*x)
)^(1/2)*sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arccos(c*x))^(1/2)/b)*(-1/b)^(1/2)+sin(-(a+b*arcc
os(c*x))/b+a/b)+sin(-3*(a+b*arccos(c*x))/b+3*a/b))/(a+b*arccos(c*x))^(1/2)

Fricas [F(-2)]

Exception generated. \[ \int \frac {x^2}{(a+b \arccos (c x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^2/(a+b*arccos(c*x))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int \frac {x^2}{(a+b \arccos (c x))^{3/2}} \, dx=\int \frac {x^{2}}{\left (a + b \operatorname {acos}{\left (c x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(x**2/(a+b*acos(c*x))**(3/2),x)

[Out]

Integral(x**2/(a + b*acos(c*x))**(3/2), x)

Maxima [F]

\[ \int \frac {x^2}{(a+b \arccos (c x))^{3/2}} \, dx=\int { \frac {x^{2}}{{\left (b \arccos \left (c x\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x^2/(a+b*arccos(c*x))^(3/2),x, algorithm="maxima")

[Out]

integrate(x^2/(b*arccos(c*x) + a)^(3/2), x)

Giac [F]

\[ \int \frac {x^2}{(a+b \arccos (c x))^{3/2}} \, dx=\int { \frac {x^{2}}{{\left (b \arccos \left (c x\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x^2/(a+b*arccos(c*x))^(3/2),x, algorithm="giac")

[Out]

integrate(x^2/(b*arccos(c*x) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{(a+b \arccos (c x))^{3/2}} \, dx=\int \frac {x^2}{{\left (a+b\,\mathrm {acos}\left (c\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(x^2/(a + b*acos(c*x))^(3/2),x)

[Out]

int(x^2/(a + b*acos(c*x))^(3/2), x)